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Learning Decoupled Training Methods for High-Inertia Wheel-Legged
Robot to Move and Grasp

Abstract—1t is always a challenging task for arm-equipped
wheel-legged bipedal robots to stably move and grasp. However,
when performing loco-manipulation tasks, how to keep the
lower-body mobile platform stable is always a critical problem.
Current research primarily focuses on low-cost, lightweight
robot platforms, but effective control methods for large-size,
high-inertia robots still remain insufficient. To address these
challenges, we propose a learning-based training framework
called Decoupled Loco-Manipulation (DeLLM), which decouples
the whole body control tasks into upper-body manipulation
tasks and lower-body locomotion tasks. DeLM is specifically
designed to enhance lower-body balance on high-inertia mo-
bile platforms while maintaining extensibility for upper-body
manipulation tasks. In particular, we introduce an Arm Ran-
domization Curriculum (ARC) method within the framework
to improve the robot’s dynamic stability by diversifying arm
poses. This approach effectively improves the robustness of the
lower-body balance during training. Finally, we introduce a
parameter calibration method to reduce the sim-to-real gap and
we successfully apply our method on a 65.7 Kg high-inertia
wheel-legged bipedal robot, demonstrating stable grasping in
tasks such as bottle grasping and waste collection, as shown
in Figure 1. To the best of our knowledge, this is the first
successful implementation of a learning-based approach for
stable grasping tasks on such high-inertia wheel-legged bipedal
robot platforms with a well-defined application scenario.

I. INTRODUCTION

Wheel-legged robots combine the high mobility of
wheeled platforms [1] with the terrain adaptability of legged
systems [2], enabling robust performance across diverse real-
world environments. When equipped with robotic arms, these
platforms can efficiently perform loco-manipulation tasks,
significantly enhancing their practical utility and productiv-
ity.

With the impressive progress of Reinforcement Learning
(RL) in robotics, an increasing number of studies have
adopted learning-based methods for robot control. Prior
research on loco-manipulation primarily focuses on low-cost,
lightweight mobile platforms [3]-[7], achieving promising
results in tasks such as locomotion [7], loco-manipulation
[8] and navigation [9]. However, some robots have to be
designed for specialized applications, often resulting in larger
size and higher mass due to their structural configurations.
The big-size or high-inertial properties make them harder to
control compared to the lightweight robots [10]. Therefore,
it still lacks a simple and effective control method to solve
the problem, especially for wheel-legged bipedal robots that
meet the conditions.

In loco-manipulation tasks, the ideal goal for the robots is
to maintain absolute lower-body stability, regardless of the
upper body’s manipulation tasks. Some works propose the

(b)

Fig. 1: Real world test. (a) shows the robot collecting a soda
can from bushes and placing it into the onboard bins via
teleoperation. (b) shows the robot using its onboard fisheye
camera for visual inference to autonomously pick up bottles
from the ground.

method for decoupling upper body control from locomotion
in the control of humanoid robot, using inverse kinematics
(IK) and motion retargeting for precise manipulation, while
RL focuses on robust lower-body locomotion [11], [12].
We adopt a similar decoupling strategy, but apply it to an
arm-equipped wheel-legged robot. Unlike humanoid robots
with flat-foot support, the inherent instability of wheels
poses greater challenges for maintaining balance during loco-
manipulation tasks.

To address the challenges, we propose a learning-based
training framework called Decoupled Loco-Manipulation
(DeLLM). DelLM decouples the whole-body control tasks into
two tasks: upper-body manipulation task and lower-body
locomotion task. To tackle the stability issues of the high-
inertia floating base, DeLLM specifically focuses on the lower-
body balance tasks. It also preserves extensibility for many
arm manipulation tasks on the mobile robot platform, such
as some Vision-Language-Action (VLA) [13] models or tele-
operations. Furthermore, we introduce Arm Randomization
Curriculum (ARC) within the framework to enhance the
robustness of lower-body stability. ARC simulates various
arm poses as real disturbances on lower-body training to
improve the balance robustness of the robot. Ultimately,
we validated the effectiveness of our approach in both
simulation and real world. We successfully apply our method
on a 65.7 Kg wheel-legged bipedal robot to complete loco-
manipulation tasks stably, as shown in Figure 1. This method
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Fig. 2: Overview of the DeLM framework. We define the upper body for robotic arm and the lower body for robot body,
legs and wheels. In the ARC section (blue region), we propose three ways in ARC to generate various arm motion poses.
In the upper-body motion section (green region), the robotic arm pose changes from the initial pose to the target pose by
ARC, which is introduced as disturbances into the lower-body training section (gray region) to make robot learn to keep
stable in the simulation. In real robot (yellow region), we use arm manipulation policies and direct teleoperation to control

the robotic arm.

has potential for real-world applications in our robot, such
as road tidying, sweeping and garbage collection.
In summary, our works are concluded as follows:

o Decoupled Loco-Manipulation Training Framework:
We propose a learning-based training framework for
arm-equipped high-inertia wheel-legged bipedal robots,
specifically addressing the challenge of maintaining
lower-body platform stability during loco-manipulation
tasks.

Arm Randomization Curriculum: We introduce an
ARC method through simulating upper-body distur-
bances on the lower body to further enhance the robust-
ness of the robot stability. Meanwhile, ARC solves the
issue about the lack of arm motions data when training.
Real-world Deployment: We propose a parameter cal-
ibration methodology aimed at minimizing the sim-to-
real gap, thereby enabling successful deployment on our
65.7 Kg wheel-legged robot.

II. RELATED WORK

A. Loco-manipulation Tasks for Legged Robots

Quadrupedal robots have demonstrated impressive capabil-
ities in both locomotion [3]-[7] and loco-manipulation tasks
[8], [14]-[18], establishing themselves as robust platforms
for mobile manipulation. Several learning-based methods

have achieved notable progress in loco-manipulation. For
example, ROA [15] developed a Regularized Online Adap-
tation method to train whole-body controllers for loco-
manipulation. UMI-L [18] combined real and simulated
data to train arm-equipped quadrupeds. Other works address
dynamic, coordinated tasks like badminton [8] and object
throwing [16] using arm-equipped robots. For humanoid
robots, several studies decouple upper-body control from
lower-body locomotion, enabling more stable and coordi-
nated loco-manipulation [11], [12]. Our approach follows a
similar decoupling ideology but is implemented on a wheel-
legged robotic platform, which presents greater challenges
due to its inherent instability.

B. Locomotion Tasks for Wheel-Legged Robots

Compared to locomotion control in quadrupedal robots,
achieving stable motion in wheel-legged bipedal robots re-
mains a significant challenge. Previous research has demon-
strated promising results using model-based control methods
in various tasks, including balance control [19] and jumping
motion planning [20], [21]. More recently, learning-based ap-
proaches have shown notable success in lightweight robots,
such as blind stair climbing [22] and loco-manipulation tasks
[23]. Despite these advances, learning-based approaches for
loco-manipulation in wheel-legged bipedal robots remain
insufficient, lacking a simple and effective method that can
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be widely applied across diverse scenarios.

C. Locomotion Tasks for High-Inertial Robots

The impact of heavy limbs and payloads on legged robot
locomotion and stability has been well studied. Specifically,
large masses increase inertial challenges, making whole-body
control harder and reducing walking performance [10], [24].
Additionally, dynamic effects such as horizontal wobbling
can further destabilize bipedal walking [24]. To mitigate
these issues, designing robotic arms with geometric and
load constraints is crucial for minimizing negative effects
on motion [25]. Moreover, integrating heavy manipulators
on quadrupeds requires careful co-optimization of design
and control to maintain loco-manipulation stability [26]. In
summary, these findings highlight the essential importance
of high-inertial properties effects to maintain stable robotic
movement.

III. METHODOLOGY
A. Preliminary

In RL, control problems are typically framed as a
Markov Decision Process (MDP), which is represented as
(S, A, P,R,v) with the time step ¢, where S denotes the
state space, A denotes the action space, P : SXx AxS — R
denotes the state transition probability, R : S x A xS — R
denotes the reward functions and v € [0,1] denotes the
discount factor. The goal of RL is to train a policy 7 that
maximizes the cumulative reward, which is defined as:

Jp(m) =E

[ee]
ZWtT(St,at,St+1)] ) (1)
t=0

where s;,8:41 € S, r € R and a; € A. The expectation
E[...] represents the expected discounted return.

To directly address the constrained problems when train-
ing, we extend this framework into a Constrained Markov
Decision Process (CMDP) [27]. Constrained RL introduces a
set C of cost functions {cy, ¢a, ..., ¢, } and the corresponding
limits {e1, €2, ...,€,}. Bach ¢; : § X A x § — R denotes the
cost of the state transition. The objective is to maximize the
reward while keeping the discounted sum of costs ¢; below
their respective threshold ¢; [28], [29], which is formulated
as follows:

max J,(m)
T , 2)
st. Vie{l,...,n}, Jo(r)<e,

where

Je,(m) =E

Z’thi(st, at, 5t+1)‘| . 3)
t=0

B. Decoupled Loco-Manipulation

Our framework DelM is illustrated in Figure 2. We
decouple the whole-body control task into two separate
components: upper-body manipulation tasks for the robotic
arm and lower-body locomotion tasks for the wheeled legs
to maintain balance.

1) Manipulation tasks for arm: As illustrated in the
ARC section of Figure 2, we categorize the ARC into
three types: Randomized Fixed Pose (RFP), Randomized
Periodic Feedforward Pose (RPFP) and Randomized Spline
Interpolation Pose (RSIP). By adjusting the relative weights
of these curricula, our method can be adapted to different
task requirements. In the upper-body motion section of
Figure 2, the robotic arm pose changes from the initial pose
to the target pose through ARC. These upper-body motions
are applied as disturbances during the lower-body balance
training. Notably, we retain all the physical parameters
of the robotic arm except for collision constraints. This
omission is intentional. By ignoring collision constraints,
the arm can reach a wider range of motions. This promotes
greater exploration and variability during training. Moreover,
although Domain Randomization (DR) includes randomized
external forces during training, it cannot fully capture the
real impact of arm motions on lower-body balance. This is
because DR typically simulates only single external forces,
such as pushes or pulls, which are insufficient to represent
the complex disturbances caused by arm movement.

2) Locomotion tasks for legs: As illustrated in the lower-
body training section of Figure 2, we adopt a one-stage
training approach to accomplish this task. In this method, arm
and body information serve as supervised signals to train the
historical state estimator [30]. The arm information includes
the end effector position P%™ € R? and the center of mass
(CoM) of the robotic arm P2"™ ¢ R? in the base frame. The
body information includes the robot base linear velocity v €
R3 and height h € R'. Our method employs Normalized-
P30 (N-P30) [28] as the primary network to enforce the
physical constraints of the real robot. Within our framework,
the historical state estimator takes the last five proprioceptive
observations as input and outputs the estimated arm and
body information. The N-P30 network then receives this
estimated information along with the current proprioceptive
observation as input, and outputs the lower-body joint angles
as control actions. The lower-body policy is trained under
arm-induced disturbances, requiring the robot to learn stable
balancing behaviors. Finally, we deploy our policy on a
real robot and stably complete loco-manipulation tasks under
both arm manipulation policy and teleoperation.

C. Arm Randomization Curriculum

We simplify the arm model by focusing on the first three
arm joint angles as the target arm joint angles. ¢®"™! denotes
the target arm pose, ¢ denotes the default arm pose,
i € [1,2,3] denotes the index for the first three joints. All
joint angles in this section are expressed in radians. The ARC
method includes the following three curricula.

1) Randomized Fixed Pose (RFP): RFP curriculum is
designed to simulate the scenario where the robot starts with
the arm in a total random initial pose ¢'*¥'"" in the real world.
In this curriculum, the arm is initialized in a fixed pose until
it is reset. It is formulated as follows:

arm,t

q RFP +

= g 4 g™ @)

1 )
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where ¢f*f'F follows a uniform distribution. Each joint
distribution range is differently designed based on its joint
limit. They are formulated as follows: ¢i*f'" ~ 14/(—0.3,0.3),
gttP ~1U(0,2.4) and ¢FFP ~ U(-1.3,0).

2) Randomized Periodic Feedforward Pose (RPFP): The
RPFP curriculum is designed to simulate periodic feedfor-
ward motions for the robotic arm. This primarily aims to
enhance the robot’s stability during specific arm motions. In
some cases, the curriculum is more important than others in
ARC. To better characterize its effects, we categorize RPFP
into three distinct types.

(a) Feedforward Trajectory. This is the basic trajectory
type used in the RPFP curriculum. To simulate dynamic
picking poses and other movements, the target arm pose for
each joint follows a sinusoidal signal with randomly sampled
frequency f, amplitude a and phase ¢, where f, a and ¢
follows uniform distribution. It is formulated as follows:

{%PFPI aq sin (27Tf1t + ¢1)

GPEPL L = | agcos 2mfat +d2) +1 |, (5)
A —az cos (27 fat + ¢p3) — 1

iarm,t — quPFPl 4 q;"ﬂhd’ (6)
where ¢F*PFF! represents the i-th arm joint angle generated
by feedforward trajectory method. f; ~ 1£(0,0.5), ¢; ~
U(O’ ’]T/2) and a/Z ~ u(qf,rm,mzn’ q;lrm,mam) ?Tm,mzn and
g;""™"™ " represent the minimum and the maximum limits

of ¢-th arm joint respectively

(b) Fourier Series Trajectory. This method synthesizes
multiple sinusoidal signals with randomized frequencies to
approximate arbitrary waveforms, thereby overcoming the
constraints imposed by strictly periodic signals on the robot’s
response. It is mathematically formulated as follows:

N
qZRPFP2 = Z Qi n sin(27rfi7nt + d)i,n)a (7)
n=1
q;zrm,t _ qZRPFP2 + q;wmvd, ()
RPFP2

where ¢; represents the ¢-th arm joint angle generated
by this method. N denotes the total number of variants
summed in the Fourier series.

(c) Randomized Pause Time. Interruptions during the
robotic arm’s motion frequently occur in practical applica-
tions. To model this case, we employ time truncation to
simulate random pauses in arm movement. Specifically, when
the elapsed time ¢ exceeds a random cutoff time ¢., the arm
remains fixed in its final pose until the trajectory is reset. It
is formulated as:

qPPEP3 — g, sin (2 fit’ + @),

t'=min(t,t.), (9)

arm,t

RPFP3
4;

=4q;

arm,d

+q (10)

where ¢f*PFF3 denotes the i-th arm joint angle generated
by this method. The variable k is uniformly sampled from

the distribution 2/(0, 1), and the cutoff time ¢, is given by
t. = kt, where t represents the total duration of the motion.

3) Randomized Spline Interpolation Pose (RSIP): RSIP
curriculum is designed to enhance the randomness of the
arm motions. Considering the entire arm length is approx-
imately 15 cm, we define a hemisphere with a radius of
10 cm which is centered at the robot’s base. A target point
for the arm’s end effector is randomly sampled from this
hemisphere. By using Inverse Kinematics (IK), we compute
each corresponding arm joint angle, and then apply spline
interpolation to generate a continuous arm motion trajectory
from the init pose to the target pose. This process can be
formally expressed as:

d
R (1)
where ¢/*TP represents the i-th arm joint angle generated

by this method.

TABLE 1
DOMAIN RANDOMIZATION.

Randomization Term  Range Unit
Mass [-5, 5] Kg
CoM of base [-0.05, 0.05] m
Motor offset [-0.03, 0.03] rad
Friction [0.1, 2] -
Restitution [0, 1] -
Inertia [0.8, 1.2] -
K factor [0.9, 1.1] -
K factor [0.9, 1.1] -
Motor strength factor  [0.9, 1.1] -
Torque delay [0,10] ms
Obs. delay [0,5] ms
Action delay [10, 35] ms
Joint delay [0, 10] ms
Imu delay [25, 55] ms
Joint friction [0.9, 1.1] -
Joint damping [0.9, 1.1] -
Joint armature [0.9, 1.1] -

Black: randomization variants related to physical properties.
Blue: randomization variants related to system delays.
Red: randomization variants related to parameter calibration.

D. Parameter Calibration Method

DR plays a crucial role in reducing the sim-to-real gap.
By carefully selecting appropriate randomization ranges,
real-world conditions can be more accurately approximated
within the simulation environment, thereby improving the
success rate of zero-shot transfer. The specific parameters
and their DR ranges used in our work are summarized in
Table I. Through empirical analysis, we identified three mo-
tor parameters that critically impact real-world performance:
joint motor friction, damping, and armature.

Some previous works collect real-world data to train
actuator network models for the legs [5] in order to reduce
the sim-to-real gap. However, this approach increases data
collection costs and may amplify errors due to the neural net-
work’s sensitivity to training parameter tuning. In contrast,
we propose a parameter calibration method tailored to our
robot. In simulation, the robot is fixed in the mid-air while a
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Fig. 3: Top-view trajectories of the robot on a 2D plane. As
the robotic arm moves from the initial pose to the target
pose, the robot autonomously adjusts its body from the
start position to the end position, resulting in a positional
deviation. This deviation trajectory is illustrated by red lines.

sinusoidal signal is applied to each joint. A PD controller
regulates the signal to drive the legs in a periodic up-
and-down motion, during which we record motor feedback
data including joint torques, velocities, and angles. In the
real world, the same sinusoidal signals are applied to the
robot’s joints to collect the corresponding motor feedback.
By matching the simulation and real-world data, we can
efficiently calibrate the initial parameters of each joint motor.
These initial parameters and their corresponding DR ranges
are highlighted in red in Table I. Despite inherent uncertain-
ties in real-world applications, our approach demonstrates
both effectiveness and efficiency.

Our policy is trained in simulation at 200 Hz and deployed
on the real robot at 50 Hz. We measured the delay times on
the real robot and accordingly designed delay ranges within
DR, including torque delay, observation delay, action delay,
joint delay and IMU delay.

IV. EXPERIMENTS AND RESULTS
A. Robot Hardware

Our robot is a wheel-legged bipedal robot platform
equipped with a 6-DoF (Degrees of Freedom) robotic arm.
It has a total mass of approximately 65.7 Kg, a base height
of roughly 33 cm, and each wheel has a diameter of about
23 cm. The robot’s mass is significantly higher than that
of comparable wheel-legged robots, primarily due to its
specialized functional and structural design. Each leg is 5-
DoF. A fisheye camera is mounted at the front of the robotic
arm’s grasper.

B. Experimental Setup

1) Observation Space: The body proprioception observa-
tions are represented as O; € R?5, with detailed components
listed in Table IV. Regarding privileged observations, in
addition to proprioceptive observations as well as arm and
body information, the observations also include leg joint

TABLE 1T
REWARD FUNCTION DESIGN.
Reward Equation Weight
Task
Lin. vel. tracking (x)  exp(—4[[vS™?® — v, ||?) 1.0
Ang. vel. tracking (z)  exp(—4||wS™? — w,||?) 1.0
Base height exp(—1000||he™? — h||?) 1.0
Euler (y) exp(—160||Ry||?) 0.8
Ang. vel. (y) exp(—50]||wyl|?) 0.8
Feet distance exp(—100d/eet) 0.2
Regularization
Lin. vel. (z) [lvzl)? -le-4
Ang. vel. (xy) [|wzy||? -0.05
Joint vel. [lgte9||? -Se-4
Joint acc. [|gte9 || -5e-7
Joint power |rteg gleg| -le-8
Action rate llat—1 — at||? -0.2
Action smoothness llat—2 + at — 2at_1||2 -0.5
Penalty
Collision LiF.j>0.1 -20.0
Stand still penalty [|lv]|? x ]IHU;ZLd‘KOJ -50.0
Orientation mismatch  ||gay |2 -10.0
TABLE III
COST FUNCTION DESIGN.
Cost Equation Weight
: l leg
Joint pos. llg"e9 —q;;3 || x Hl\qlef’*qfff,,,\l>0 0.3
Joint vel. clip(|[¢**9|| — 0.8¢,5% ,0,1) 0.3
Joint torque clip(||rte9|| — 0.87;;;’1, 0,1) 0.3
Acc smoothness  0.1max(||§¢9|| — ;57 , 0) 0.1

accelerations ¢'°9, leg joint torques 7'°9, base mass m, base
CoM, default leg joint positions ¢'°9>¢ and the joint stiffness
and damping coefficients K, and K.

2) Reward Function Design: In Table II, we classify our
reward functions into three categories based on their func-
tionality: task rewards, regularization rewards and penalty
rewards. For the feet distance reward, we define the feet

distance dfect as follows:
afeet — ||Pleft — prish), 1)

where PLe/* and PJio"* denote the xy positions of the left
and right feet respectively. This reward encourages the robot

TABLE IV
PROPRIOCEPTION OBSERVATIONS.
Term Description Obs Scale
vgmd Command linear velocity in x-axis 1.0
wgmd Command angular velocity in z-axis 1.0
h¢™d  Command height in z-axis 1.0
q'ed Joint angles of the legs 0.02
gtes Joint velocities of the legs 1.0
G@heel  Joint velocities of the wheels 1.0
ar—1 Previous action 1.0
w Angular velocities of the body 1.0
R Euler angles of the body 1.0
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TABLE V
ABLATION STUDY RESULTS ON LOCO-MANIPULATION TASKS METRICS.

Terms MBDD (m)J MWDD; (m)] MWDD,. (m)] MBED, (deg)l MBED. (deg)] SR (%)1
Evaluated under the RFP
w/o both 0.271 £ 0.004  0.246 + 0.005 0.252 + 0.004 0.489 + 0.122 1.280 + 0.593 87.1%
w/o AEIL 0.095 = 0.004 0.130 £ 0.006  0.059 + 0.004 0.572 £ 0.113 6.742 + 2.846 94.1%
w/o ARC 0.241 £ 0.006  0.178 + 0.006 0.264 + 0.007 0.566 + 0.200 2.827 + 1.170 89.2%
ours 0.123 £ 0.005  0.099 = 0.005  0.105 + 0.005 0.307 £ 0.116 0.815 + 0.207 94.6%
Evaluated under the RPFP
w/o both 0.564 £ 0.010  0.524 £ 0.010  0.583 = 0.010 0.476 + 0.204 3.637 + 2.045 66.5%
w/o AEIL 0.317 £ 0.004  0.398 + 0.004 0.251 + 0.004 0.553 £ 0.190 9.012 + 5425 81.6%
w/o ARC 0.549 £ 0.010  0.487 £0.010  0.594 + 0.010 0.339 £ 0.186 3.532 + 1.369 67.4%
ours 0.231 = 0.006  0.203 = 0.006  0.246 + 0.006 0.325 + 0.213 2.799 + 0.992 86.4%
Evaluated under the RSIP
w/o both 0.191 £ 0.018  0.153 £ 0.018 0.175 £ 0.018 0.674 £ 0.198 1.882 + 0.906 61.6%
w/o AEIL 0.115 £ 0.020  0.138 £ 0.020  0.047 + 0.020 0.547 + 0.153 4.838 +2.442 76.8%
w/o ARC 0.166 = 0.014  0.101 £ 0.014 0.182 + 0.014 0.703 + 0.198 2.773 + 0.831 66.5%
ours 0.073 = 0.005  0.041 = 0.005  0.052 + 0.005 0.232 + 0.216 1.015 + 0.352 85.3%
RFP Curriculum RPFP Curriculum RSIP Curriculum
0.025 ! 0.05 T 0.025 T —— w/o both
0.000 L ] ! —k 0:00 —.—___:-——/-* 0.000 c‘-————:—,_* — W/o AEI
~0.025 ! ~0.05 ! -0.025 ! w/o ARC
= 0025 | 0.05 | 0.025 | ——ours
E o000 Y S— 0.00 —— & 0.000 S SRR
S -0025 — | | -o0.0s ‘ i -0.025{ | . | start
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o 0.000 —— ¥ 0.00 @ t 0.000 = ® i
: -0.025 . -0.05 , -0.025 X * % end
0.025 " 0.05 | 0.025 . * position
0.000 .I.—__.* 0.00 __.._—* 0.000 B
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Fig. 4: Ablation study results about robot’s top-view trajectories on a 2D plane. The red dashed line represents the end

position achieved by our method in comparison to others.

to minimize the use of its fore and hind legs to maintain
stable support. Regarding the collision reward, we define
the indicator function I[{,}, which returns 1 if the specified
condition is met, and O otherwise. Here, F,. denotes the
contact force, and g,, represents the projection of gravity
along the x and y axes.

3) Cost Function Design: In Table III, we define four
constraint limits: joint position limits qllffi, joint velocity

limits qllfgl, joint torque limits Tll.eg and acceleration limits
.leg

m

G- ALl of the cost functions are defined as once the
corresponding value exceeds its predefined limit, the excess
will be recorded and accumulated as part of the final cost

signal for cost critic network in N-P30.

C. Ablation Study

The ablation study evaluates two critical components of
our method: Arm Estimated Information (AEI) and the ARC.
AEI includes PX™ and P&™, which provide essential
information about the arm’s pose and CoM respectively. As
the robotic arm moves, its CoM will deviate accordingly.

These changes cause involuntary movement of the robot’s

lower body in the direction of the arm’s motion. Figure 3
illustrates the corresponding top-view trajectory. To quantify
the positional deviation, we define the Mean Base Distance
Deviation (MBDD) as the average Euclidean distance be-
tween the robot’s start and end positions on the 2D plane:
MBDD = ||P*" — Pgp?, (13)
where P51 and Pgy¢ denote the initial and final positions
of the base on the 2D plane, respectively. Similarly, the
Mean Wheel Distance Deviation (MWDD) is defined as the
corresponding average distance deviation for each wheel,
denoted by the subscripts (.); and (.),, respectively.

To account for potential rotations of the robot, we in-
troduce the Mean Base Euler Deviation (MBED), which
quantifies the maximum deviation in Euler angles from zero.
Finally, the Success Rate (SR) is defined as the proportion
of environments in which the MBDD remains below a
predefined deviation threshold of 25 cm. This threshold is
chosen based on the physical characteristics of the robot,
particularly considering the diameter of the wheels.
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Fig. 5: Real world experimental results for MBDD,, in (a) and MBED, in (b). The green and blue regions indicate the
durations of the robotic arm’s downward grasping and upward lifting motions, respectively. The red dashed lines represent

the tolerable range in (b).

We use Isaac Gym [31] as our simulator to train 4,096
parallel environments simultaneously, each one was trained
for 11,000 iterations on an NVIDIA RTX 4070 GPU. The
ablation variants are defined as follows:

w/o ARC: Policy trained without ARC.

w/o AEL Policy trained without AEIL

w/o both: Policy trained without both ARC and AEL
ours: Policy trained using both ARC and AEI as pro-
posed.

We evaluate our approach across 2,000 environments using
random seeds over five rounds. For experimental conditions,
we evaluate our model by using three types of methods in
ARC to randomly generate robotic arm motions. Specifically,
the proportions of types (a), (b) and (c) in the RPFP
curriculum are set to 0.3, 0.3 and 0.4 respectively.

Our ablation results are summarized in Table V. In the
RFP evaluation, the robot is required to maintain stability
under randomly fixed poses of the robotic arm. According
to the MBDD metric, our method yields a value of 0.123
m, which is slightly higher than that of the variant without
AEI (0.095 m), indicating a marginal increase in positional
deviation under this specific measure. However, the variant
without AEI exhibits a notable orientation deviation, with a 7
cm discrepancy between MBDD; and MBDD,., as well as a
substantial yaw deviation of 6.742° in MBED, . In contrast,
our method achieves a much smaller left-right deviation of
only 0.6 cm and a significantly lower yaw deviation of
0.815°. Furthermore, our final SR reaches 94.6%, outper-
forming all other variants.

In the RPFP and RSIP evaluations, the robot must dy-
namically respond to continuous variations in the robotic
arm’s pose. In these evaluations, our method achieves SRs

of 86.4% and 85.3% and represents improvements of 19.5%
and 23.7% respectively, over the variant without ARC and
AEI. The MBDD scores, 0.231 m and 0.073 m, are the
best among all evaluated methods (highlighted in bold in the
table). Although the variant without ARC achieves the SR of
89.2% in the static arm task, its performance drops to 67.4%
and 66.5% in the dynamic arm tasks, indicating that incor-
porating ARC improves the stability of loco-manipulation
tasks. While the variant without AEI performs reasonably
well under all three evaluation conditions, it consistently
exhibits the largest yaw deviation in the MBED, metric
due to the lack of accurate estimation of the arm’s pose.
This suggests that the robot tends to compensate by rotating
its body to maintain stability. Such behavior is generally
considered undesirable.

To provide an intuitive understanding of the data in
Table V, we use the top-view trajectories in Figure 4 to
show the robot’s positional deviations along the x and y
axes. Initialized 0.36 m above the ground, the robot first
shifts backward, then deviates further due to the robotic arm’s
movement, and finally stabilizes at the end position. The red
dashed line marks our method’s end position on the x-axis
compared to other variants. In (a), only the variant without
AEI shows smaller deviation, but in (b) and (c), our method
outperforms all others.

D. Real Robot Experiment

We select a representative experiment from multiple real-
world trials for detailed analysis. The robot is evaluated by
picking up a water bottle from the ground via teleoperation.
As shown in Figure 5 (a), the deviation remains small and
oscillates near the initial position during the first 10 seconds.
As the gripper descends deeper, the robot performs a gradual
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backward movement of approximately 0.22 m (green region)
to adapt to changes in the arm’s CoM. After grasping
the object at the 15-second mark, the arm lifts, causing a
deviation in its CoM. To compensate for this, the robot moves
forward (blue region). Ultimately, the robot’s final position
deviates by only 0.16 m from the initial position. Figure 5 (b)
shows the pitch angle deviation from zero. The pitch angle
fluctuates mildly within +0.02 radians, as indicated by the
red lines, with only a slight deviation beyond this range in
the final stage (blue region).

V. CONCLUSION

In this work, we propose a decoupled training framework,
DeLM, designed to enhance motion stability during manip-
ulation tasks for high-inertia wheel-legged robots. We intro-
duce the ARC training method to address the challenge of
insufficient lower-body stability during manipulation, which
significantly improves the robustness of lower-body balance
control. Additionally, we develop a parameter calibration
method to bridge the sim-to-real gap, providing valuable
insights for future deployments. However, our method still
faces challenges in highly unstructured terrains. In future
work, we plan to extend our framework to handle more
complex terrains while achieving coordinated control of both
locomotion and manipulation tasks.
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