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Abstract. In recent years, reinforcement learning has significantly ac-
celerated the development of legged robot control systems. The prevalent
paradigm involves conducting reinforcement learning training in simu-
lated environments initially, followed by a transition to real-world appli-
cations, a process known as sim-to-real transfer. However, this paradigm
still cannot fully bridge the gap between between simulation and reality.
To further narrow the gap between simulation and reality, this paper pro-
poses an innovative online learning strategy that aims to conduct train-
ing directly on the physical robot. To achieve this, we harness the power
of pre-training and instruction learning to enhance learning efficiency.
Additionally, we have designed an autonomous resetting system that en-
ables the robot to automatically reconfigure and seamlessly resume learn-
ing after a fall, ensuring continuous progress. Our findings indicate that
the performance of the robot after online learning has been enhanced
to a certain extent compared to direct deployment using sim-to-real.
The research results demonstrate the effectiveness of the Learn-in-Real
paradigm in enhancing the locomotion capabilities of legged robots and
provide a promising pathway for improving the performance of other
legged robots.

Keywords: Online Learning, Instruction Learning, Reinforcement Learn-
ing, Sim-to-Real, Humanoid Robots.

1 Introduction

The rapid development of model-free Reinforcement Learning (RL) has led to sig-
nificant breakthroughs in the field of robotic motion control. RL enables agents
to learn optimal policies through trial and error in interaction with the environ-
ment, making it an ideal tool for training robotic control systems in simulation
environments[1]. In the domain of locomotion control, the application of RL is
particularly widespread, as it allows robots to autonomously acquire complex lo-
comotion skills through interaction with simulated environments, without relying
on precise dynamic models. However, despite the fact that simulation training
provides a safe and cost-effective platform for robotic control, the deployment
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Fig. 1. Sim-to-Real Gap.

of physical robots using this approach has long faced challenges due to the Sim-
to-Real gap (Fig.1) between simulation and the real world.

To address this issue, existing methods have largely attempted to narrow
the Sim-to-Real gap by introducing perturbations into simulation software, such
as adding noise[2][3], domain randomization[4][5], and meta-learning[6][7]. Al-
though these methods have enabled robots to transfer from simulation to real-
ity, they still fail to completely eliminate the differences between simulation and
reality, resulting in a decline in robotic performance during the transfer process.

We believe that embodied intelligent robots should perform anthropomor-
phic tasks through active perception of the environment, autonomous learning,
and autonomous decision making, with their brains being agents based on RL.
Therefore, constructing a new Learn-in-Real learning paradigm is a key method
for the large-scale deployment of robots in the future, that is, robots can directly
perform online RL in the real environment.Our goal is to conduct online rein-
forcement learning based on Sim-to-Real, thus compensating for the performance
degradation of robot deployment and even achieving a leap in robot capabilities.

Our main contributions can be summarized in the following three points:

1) Online learning further bridges the significant gap between physical en-
tities and simulation environments. It empowers physical robots to engage in
ongoing learning processes, leading to continuous improvement and performance
enhancement as the duration of learning increases.

2) The adoption of pre-training and instruction learning solves the problem of
low learning efficiency and slow learning speed. Prevents the robot from learning
from scratch and greatly accelerates the learning process.
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3) The automatic reset of the sky track addresses the issue of physical objects
being prone to falling and difficult to reset. The innovative design of the sky track
system can detect the robot’s fall and reset it, ensuring safety and efficiency.

2 Related work

2.1 Robot Reinforcement Learning

To bridge the gap between simulation and reality, domain randomization tech-
niques have been widely adopted. In 2019, Hwangbo et al. [8] of ETH Zurich first
combined domain randomization with reinforcement learning in simulation envi-
ronments. The trained models were successfully deployed on the real quadruped
robot ANYmal, significantly improving robot performance in dynamic and agile
movements. Haarnoja et al. [9] from DeepMind combined high frequency con-
trol, target dynamics randomization, and perturbations for reinforcement learn-
ing training, achieving sample-free transfer from simulation to reality. Gu et al.
[10] open-sourced the Humanoid-Gym framework for end-to-end reinforcement
learning training of humanoid robots. This framework significantly simplified the
training process and the difficulty of Sim-to-Real transfer through its carefully
designed reward functions and domain randomization techniques, lowering the
development threshold for humanoid robot algorithms.

Introducing realistic noise is another technique to narrow the gap between
simulation and reality. Kaufmann et al. [2] from the University of Zurich en-
hanced the realism of simulation environments by pre-training real-world per-
ception systems and empirical noise models. This approach helped them achieve
the first autonomous drone control at a human-champion level, featured on the
cover of Nature. Gu et al. [11] proposed the Denoising World Model Learning
(DWL) framework, which uses an encoder-decoder structure to process noisy
data in simulation environments and learn effective state representations. This
method reduced the difficulty of transferring from simulation to reality and im-
proved the walking capabilities of humanoid robots in complex and challenging
real-world environments.

Meta-learning is also a strategy to address the Sim-to-Real problem. Arndt
et al. [12] used meta-learning techniques to train policies that can adapt to
various dynamic conditions. By combining these policies with task-specific tra-
jectory generation models, they provided an action space for rapid exploration,
effectively tackling the Sim-to-Real problem.

2.2 Robot Online Learning

To address the challenge of maintaining consistency between highly realistic
simulation environments and the real world, researchers have begun to integrate
online learning into the field of reinforcement learning, that is, training directly
in real world environments. For example, in fixed-base robots such as robotic
arms, online learning has demonstrated its effectiveness through massive data
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training [13]. Luo et al. [14][15] have consistently employed the integration of
reinforcement learning with physical robotic systems, underscoring that while
simulation facilitates rapid data generation, the intrinsic value of real-world ex-
perimental data remains indispensable.

However, for floating-base physical systems, such as legged robots, the cost
of online policy adjustment is extremely high because they are prone to damage
during repeated trial and error. Therefore, improving sample efficiency and en-
suring operational safety have become two key considerations in the research of
legged robots. Haarnoja et al. [16] proposed a sample-efficient deep reinforcement
learning algorithm based on maximum entropy, which can learn quadruped lo-
comotion controllers from scratch in an end-to-end manner on real-world robots,
automatically forming walking gaits in a short time.

Other researchers have adopted a hybrid approach that combines simulation
and real-world environments to narrow the gap between simulation and real-
ity. Jonnarth et al. [17] trained robots using motion imitation and semi-virtual
environments, achieving environmental diversity and automatic scene resetting
through simulated sensors and randomized obstacles, reducing the differences
between simulation and real-world applications. They also found that higher
inference frequencies allow Markovian policies to be directly transferred from
simulation to the real world, while more complex higher-order policies can fur-
ther close the gap through fine-tuning.

In terms of reducing human intervention, Bloesch et al. [18] trained small hu-
manoid robots to walk and interact using onboard sensors and limited hardware
prior knowledge, helping the robot to stand up again through preprogrammed
feedforward controllers when it falls. Gupta et al. [19] proposed a method that
does not require resetting, achieving mutual resetting by learning multiple tasks
simultaneously, reducing the need for human intervention.

In this research context, the work of Smith et al. [20] is particularly notewor-
thy. They combined imitation learning and online learning to fine-tune locomo-
tion policies in the real world, demonstrating that a small amount of real-world
training can significantly improve deployment performance, allowing the A1
quadruped robot to autonomously fine-tune locomotion skills in various environ-
ments. Subsequently, they used model-based non-policy reinforcement learning
to learn from scratch in the real world, quickly learning quadruped locomotion
through autonomous data collection [21] . Building on this, Ye et al. [22] pro-
posed a guided learning paradigm combined with online learning, which allows
the A1 robot to quickly learn various gaits, turns, and forward walking without
data collection, preventing falls by increasing step frequency and avoiding the
need for resetting, thus achieving higher training efficiency.

3 Methods

In this study, we used Unity, Isaac Gym, and MuJoCo as the primary software
platforms, in conjunction with the Droid humanoid robot Walker II X02 Lite A
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Fig. 2. The framework for online learning in the real world for humanoid robots.

hardware platform, to validate the Learn-in-Real paradigm. The framework for
online learning in the real world is depicted in Fig.2.

We initially employ instruction learning within Isaac Gym to train the robot’s
basic walking gaits. Subsequently, we migrate to MuJoCo to validate the feasi-
bility and ensure the safety of the pre-trained model. Following this, we deploy
the pre-trained model onto the physical robot. At this stage, the robot has es-
sentially learned to maintain balance. Building upon this pre-trained network,
we conduct online reinforcement learning through real-time interaction with the
robot via gRPC (Google Remote Procedure Call), ultimately refining the policy
network further.

In this section, we will introduce the main components of the Learn-in-Real
framework: Instruction Learning, Pre-training, Online Learning, and the Reset
System.

3.1 Instruction Learning

Instruction Learning, as an advanced learning method that integrates traditional
reinforcement learning with direct feedforward control, optimizes the learning
path for robots to handle complex action sequences. It enables robots to use basic
stepping actions as feedforward signals. Starting from these signals, combined
with a reward mechanism, robots can quickly learn and master a variety of gaits.

The input is the reference trajectory for the position for each joint. Since
walking motion can be regarded as the left and right legs alternately performing
a cosine waveform, we use a periodic trajectory, which means that the joints
cycle through motion with a fixed period. In this case, the reference angle is
designed as a sinusoidal signal

θreft = θ0 +∆θ
1− cos

(
2πt
T

)
2

(1)
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The feedforward action is obtained by mapping the reference angle to [−1, 1]:

aI = 2
θreft − θmin

θmax − θmin
− 1 (2)

where θreft represents the reference angle of the joint and θmin and θmax denote
the minimum and maximum limits of the joint range of motion, respectively.
Then, the feedback action aL from the neural network is weighted by the pro-
portional coefficient k and added to the feedforward guiding action aI to obtain
the final action output.

aRL = kaL + aI (3)

This approach significantly improves data utilization efficiency during the learn-
ing process and reduces the amount of exploration required when starting from
random policies[22].

3.2 Pre-training

To enhance the efficiency of the pre-training phase, we leveraged the capabilities
of the Isaac Gym simulation environment, enabling the parallel training of thou-
sands of robots. This approach significantly accelerated the learning process for
the robots.

During the pre-training phase, we employed a reinforcement learning-based
model M = ⟨S,A, T,O,R, γ⟩. In this model, S and A define the state and ac-
tion spaces, respectively. T (s′|s, a) describes the probability of transitioning to
state s′ given the current state s and action a, R(s, a) is the reward function,
γ ∈ [0, 1] is the discount factor, and O represents the observation space. This
model is designed to facilitate a smooth transition from full observability in sim-
ulation environments (s ∈ S) to partial observability in the real world (o ∈ O).
In the training process, we utilized the loss function of the Proximal Policy
Optimization (PPO) algorithm [23], combined with an asymmetric actor-critic
approach [24]. Furthermore, we incorporated privileged information during the
training phase and switched to non-privileged observations during deployment.

Table 1. Overview of Domain Randomization.

Parameter Unit Range Operator Type

Joint Position rad [-0.02, 0.02] additive Gaussian (1σ)
Joint Velocity rad/s [-0.5, 0.5] additive Gaussian (1σ)
Angular Velocity rad/s [-0.2, 0.2] additive Gaussian (1σ)
Euler Angle rad [-0.1, 0.1] additive Gaussian (1σ)
Body Mass kg [-6, 6] additive Gaussian (1σ)
System Delay ms [0, 10] - Uniform
Friction - [0.1, 1.5] - Uniform
Motor Strength % [90, 110] scaling Gaussian (1σ)
Kp % [50, 150] scaling Gaussian (1σ)
Kd % [50, 150] scaling Gaussian (1σ)
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This design allows us to fully leverage complete information in the simulation
environment while ensuring the model’s adaptability and robustness in the real
world.

The design of the reward function is crucial for reinforcement learning as it
directly influences the agent’s behavior and performance. Our reward function
consists of three key components: velocity tracking reward, gait reward and
regularization term.

To enable successful transfer of the pre-trained model to physical robots,
we carefully designed a set of domain randomization parameters, as detailed in
Table 1.

3.3 Online Learning

Online learning utilizes data that is continuously updated over time. When the
model is presented with new data, it undergoes partial training or adjustment to
adapt to these updates, creating a cyclical process. Consequently, compared to
offline learning, models that employ online learning are better equipped to handle
scenarios where data evolves over time. Due to its high learning efficiency, in-
struction learning is particularly well-suited for online learning with real robots.
Online learning collects data directly from actual robots and updates control
strategies in real-time, thereby eliminating the sim-to-real problem[22]. By plac-
ing the agent in a variety of potentially changing environments, it enhances the
agent’s adaptability to unfamiliar settings, ensuring stability in the real world.

We selected the Unity ML-Agents framework for online learning. This frame-
work features an off-the-shelf reinforcement learning library and superior vi-
sualization capabilities. Communication with the robot is facilitated through
gRPC, with neural networks receiving observations in real-time to generate ac-
tions designed to maximize rewards. The observations used for online reinforce-
ment learning align with the non-privileged observations. The reward function
for online learning can be tailored to address specific outcomes following the
sim-to-real transfer.

3.4 Reset System

Traditionally, if a robot falls during the learning process, it not only risks damag-
ing its mechanical structure but also greatly limits the continuity and efficiency
of learning. This is because manual resetting is not only time-consuming and
labor-intensive, but also increases the risk of maintenance costs and operational
interruptions.

In light of this, we have innovatively introduced an automatic celestial track
reset system(Fig.3), which can monitor the robot’s status in real-time. This
system mainly consists of a wire hanger equipped with a reducer. The robot’s
ascent and descent are controlled by a Xiaomi CyberGear servo motor through
the wire. We use the ESP32 C3 Super Mini Bluetooth communication module
to communicate with the computer, which automatically sends reset commands
to the system during training. Once it detects signs of the robot losing balance
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Fig. 3. Reset system with servo-driven lift wire.

or falling, the system immediately initiates the reset procedure. By precisely
controlling the motor to pull the rope, the robot is quickly and smoothly pulled
back to a preset safe position or the starting point for continued learning, all
without the need for human intervention, achieving a seamless transition from
detection to reset.

4 Experimental Results

The humanoid robot we used, the X02LiteA bipedal robot, is a tendon-driven
robot with a height of 1.6 meters, a weight of 30 kilograms, and a total of 18
degrees of freedom. In this scenario, only 10 legs joints were used, including hip
yaw, hip roll, hip pitch, knee pitch, and ankle pitch.

In this section, we will provide a detailed description of the content of our
experimental validation.

4.1 Learn in Sim

After training in Isaac Gym, the pre-trained model can be successfully trans-
ferred to MuJoCo, where it performs well during walking tasks. Subsequently,
deploying it directly onto the physical robot is also successful. The reward curve
obtained during training in Isaac Gym is shown in Fig.4.

However, after transferring the policy to the physical robot, we observed that
despite the incorporation of domain randomization during training, there are
still noticeable differences between the performance of the policy network on the
physical robot and that in the MuJoCo simulation environment. One particularly
evident phenomenon is the significant body vibrations during the robot’s walking
process on the physical platform, as illustrated in Fig.4. This figure indicates that
while the differences in body angular velocity in the x-direction and base roll
between MuJoCo and the real robot are relatively small, there are substantial
discrepancies in body angular velocity in the y-direction and base pitch. These
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Fig. 4. Mean reward during pre-training in Isaac Gym.

findings suggest that the robot’s performance deteriorates significantly after the
sim-to-real transfer compared to the simulation environment, highlighting the
persistent gap between simulation and reality.

To further close the Sim-to-Real gap, one approach is to continue tuning
the parameters during training. This method involves multiple training and de-
bugging iterations and may still fail to achieve a very small Sim-to-Real gap.
Another approach is to conduct online reinforcement learning on the physical
robot, leveraging real-time interaction data from the real world to bridge the
gap between simulation and reality.

4.2 Learn in Real

Given that we use Unity for inference through the ONNX policy network, the
pre-trained policy network is also saved in ONNX format. The training setup
for online learning includes a fixed time step of 0.01 seconds, a time scale of 1,
and a maximum of 1000 steps per episode.

The observations and actions used in online learning are consistent with those
in the Sim-to-Real setup. In terms of reward function design, we base it on the
performance from simulation to reality. For example, after deploying the policy
to the physical robot, we observed significant vibrations. To address this issue,
we designed a reward function aimed at reducing the robot’s body oscillation.

ronline = rlive + reuler + rω (4)

Here, rlive represents the survival reward, reuler is the penalty term for Euler
angles, which imposes a penalty when the Euler angle exceeds a set threshold
(0.02 in this experiment), rω is the penalty term for angular velocity, which
imposes a penalty when the angular velocity exceeds a set threshold (0.5 in this
experiment).

At the beginning of the training, the policy network is fine-tuned based on
the pre-trained network, and the reward value starts to gradually increase, as
shown in Fig. 6.
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Fig. 5. Comparison chart of the robot’s body angular velocity (in the x and y direc-
tions) and Euler angles (roll and pitch) after MuJoCo, Sim2Real, and Learn-in-Real.

After 40 minutes of online learning, by comparing and analyzing the changes
in the robot’s base angular velocity and Euler angles before and after online
learning, as shown in Fig. 5. We found that the peak values of the robot’s angular
velocity in the x-direction and the Euler angle around the roll-axis were lower
after online learning than in the MuJoCo simulation environment. Moreover,
compared with the state immediately after deploying the policy using Sim-to-
Real, the peak values of all parameters were reduced after online learning.

This indicates that online learning successfully reduced the robot’s body os-
cillation during walking. Compared with the deployment strategy directly from
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Fig. 6. Cumulative reward during online learning in Unity.

simulation to reality, the performance is significantly improved. The experimen-
tal results fully demonstrate the effectiveness of online learning on the physical
robot. It not only further narrows the performance gap of Sim-to-Real but also
performs better than in the simulation environment in some aspects.

5 Conclusion

In conclusion, the Learn-in-Real paradigm offers a novel and effective approach
for humanoid robots to tackle the Sim-to-Real challenge. By conducting online
learning in real environments, it adapts to environmental changes in real-time,
effectively reducing the gap between simulated and real-world scenarios. The
use of feedforward guidance learning combined with pre-trained networks sig-
nificantly speeds up the learning process. Moreover, the automatic reset system
addresses the issue of robot resetting during online learning, ensuring that the
robot can automatically recover after a fall, thus maintaining the continuity and
safety of training. We anticipate that this concept will advance the development
of robotic technology to a higher level and enable broader applications.
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